If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144m^2-196=0
a = 144; b = 0; c = -196;
Δ = b2-4ac
Δ = 02-4·144·(-196)
Δ = 112896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{112896}=336$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-336}{2*144}=\frac{-336}{288} =-1+1/6 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+336}{2*144}=\frac{336}{288} =1+1/6 $
| -u+248=161 | | 2/3y=3/2(4/9+3) | | 4.4=j-5.6 | | 2y2-4-7y=0 | | 3(x+6)3=-6 | | -47=7p-5 | | y2-y-20=0 | | 46=182-y | | 1.037x+0.02x+25=30.285 | | x^2+2x-2400=0 | | 3z-2=-23 | | -3(m-4)=2(-3m+11) | | 10x=0.10+0.35 | | 3y2-11y+10=0 | | 9+8p=-23 | | (y-17)^2-121=0 | | 70t+57t=635 | | -31=25+a | | 6x-10=-8+x3 | | d−8−2=12 | | 2/3y+11=-1/2y+6 | | (z+2)^2=-25 | | (y-17)^2=121 | | x2=x+90 | | 5v-4{10}=4/5 | | -0.75(4x-8)=-2.5(-4-2x) | | 4|3x-4|=15 | | √x+4+7=15 | | 3(y+1)=40-2y | | (5t+5)=2(t+1)+4 | | -0.07p-0.6=6 | | |4x-11|=4 |